Molecular Line Profiles from a Core Forming in a Turbulent Cloud

نویسندگان

  • Jeong-Eun Lee
  • Jongsoo Kim
چکیده

We calculate the evolution of molecular line profiles of HCO and CO toward a dense core that is forming inside a magnetized turbulent molecular cloud. Features of the profiles can be affected more significantly by coupled velocity and abundance structures in the outer region than those in the inner dense part of the core. The velocity structure at large radii is dominated by a turbulent flow nearby and accretion shocks onto the core, which resulting in the variation between inward and outward motions during the evolution of the core. The chemical abundance structure is significantly affected by the depletion of molecules in the central region with high density and low temperature. During the evolution of the core, the asymmetry of line profiles easily changes from blue to red, and vice versa. According to our study, the observed reversed (red) asymmetry toward some starless cores could be interpreted as an intrinsic result of outward motion in the outer region of a dense core, which is embedded in a turbulent environment and still grows in density at the center. Subject headings: astrochemistry — ISM: molecules — ISM: clouds — stars: formation — MHD — methods: numerical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Collapses and Expansions in Star-Forming Clouds

Spectral molecular line profile observations of star-forming molecular clouds sometimes show distinct red asymmetric double-peaked molecular line profiles with weaker blue peaks and stronger red peaks. For some star-forming molecular clouds, such molecular transitions with red asymmetric line profiles and blue asymmetric line profiles (i.e. blue asymmetric double-peaked molecular line profiles ...

متن کامل

Molecular Line Profiles of Collapsing Gas Clouds

Emission line profiles of tracer molecule H2CO 140 GHz transition from gravitational core collapsing clouds in the dynamic process of forming protostars are calculated, using a simple ray-tracing radiative transfer model. Three self-similar dynamic insideout core collapse models – the conventional polytropic model, the empirical hybrid model and the isothermal model – for star-forming molecular...

متن کامل

A Case Study of Low-mass Star Formation

This article synthesizes observational data from an extensive program aimed toward a comprehensive understanding of star formation in a low-mass star-forming molecular cloud. New observations and published data spanning from the centimeter wave band to the near infrared reveal the high and low density molecular gas, dust, and pre-main sequence stars in L1551. The total cloud mass of ∼ 160M cont...

متن کامل

Structure and Conditions in Massive Star Forming Giant Molecular Clouds

Massive stars form in clusters within self-gravitating molecular clouds. The size scale of these clusters is sufficiently large that nonthermal, or turbulent, motions of the gas must be taken into account when considering their formation. Millimeter wavelength radio observations of the gas and dust in these clouds reveal a complex, self-similar structure that reflects the turbulent nature of th...

متن کامل

Confronting Herschel observations and numerical simulations

Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009